Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.

نویسندگان

  • Taiji Adachi
  • Yoshitaka Kameo
  • Masaki Hojo
چکیده

In bone functional adaptation by remodelling, osteocytes in the lacuno-canalicular system are believed to play important roles in the mechanosensory system. Under dynamic loading, bone matrix deformation generates an interstitial fluid flow in the lacuno-canalicular system; this flow induces shear stress on the osteocytic process membrane that is known to stimulate the osteocytes. In this sense, the osteocytes behave as mechanosensors and deliver mechanical information to neighbouring cells through the intercellular communication network. In this study, bone remodelling is assumed to be regulated by the mechanical signals collected by the osteocytes. From the viewpoint of multi-scale biomechanics, we propose a mathematical model of trabecular bone remodelling that takes into account the osteocytic mechanosensory network system. Based on this model, a computational simulation of trabecular bone remodelling was conducted for a single trabecula under cyclic uniaxial loading, demonstrating functional adaptation to the applied mechanical loading as a load-bearing construct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro 3D Bone Response to Fluid Flow-induced Shear Stress and Mechanical Strain

INTRODUCTION Mechanical loading is a critical factor in the bone remodeling process and subsequently the strength and structure of bone. Trabecular bone is subjected to a complex physical environment due to its complex microstructure. This results in bone cells, within the bone tissue, being exposed to various mechanical signals including fluid flow-induced shear stress and mechanical strain. M...

متن کامل

Integrin Signaling and the Response of Osteocytes to Oscillatory Fluid Flow

+*Litzenberger, J B; *Tummala, P; *Jacobs, C R +*Veterans Administration Medical Center/Stanford University, Palo Alto, CA [email protected] INTRODUCTION Osteocytes are mechanosensitive cells in bone and are believed to be responsible for initiating and coordinating osteogenic and osteoclastic processes in vivo. Dynamic fluid flow has been shown to be a potent regulator of bone cell metabolis...

متن کامل

Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow.

Osteocytes, regarded as the mechanical sensor in bone, respond to mechanical stimulation by activating biochemical pathways and mediating the cellular activities of other bone cells. Little is known about how osteocytic networks respond to physiological mechanical stimuli. In this study, we compared the mechanical sensitivity of osteocytic and osteoblastic networks under physiological-related f...

متن کامل

Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.

The process of bone remodeling is regulated by metabolic activities of many bone cells. While osteoclasts and osteoblasts are responsible for bone resorption and formation, respectively, activities of these cells are believed to be controlled by a mechanosensory system of osteocytes embedded in the extracellular bone matrix. Several experimental and theoretical studies have suggested that the s...

متن کامل

Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells.

We tested the hypothesis that fluid shear stress (tau) modifies the expression, function, and distribution of junctional proteins [connexin (Cx)43, Cx45, and zona occludens (ZO)-1] in cultured bone cells. Cell lines with osteoblastic (MC3T3-E1 cells) and osteocytic (MLO-Y4 cells) phenotypes were exposed to tau-values of 5 or 20 dyn/cm(2) for 1-3 h. Immunostaining indicated that at 5 dyn/cm(2), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 368 1920  شماره 

صفحات  -

تاریخ انتشار 2010